SYSCALLS(2) manual page
Table of Contents
syscalls - Linux system calls
Linux
system calls.
The system call is the fundamental interface between
an application and the Linux kernel.
System
calls are generally not invoked directly, but rather via wrapper functions
in glibc (or perhaps some other library). For details of direct invocation
of a system call, see intro(2)
. Often, but not always, the name of the wrapper
function is the same as the name of the system call that it invokes. For
example, glibc contains a function truncate() which invokes the underlying
"truncate" system call.
Often the glibc wrapper function is quite thin,
doing little work other than copying arguments to the right registers before
invoking the system call, and then setting errno appropriately after the
system call has returned. (These are the same steps that are performed by
syscall(2)
, which can be used to invoke system calls for which no wrapper
function is provided.) Note: system calls indicate a failure by returning
a negative error number to the caller; when this happens, the wrapper function
negates the returned error number (to make it positive), copies it to errno,
and returns -1 to the caller of the wrapper.
Sometimes, however, the wrapper
function does some extra work before invoking the system call. For example,
nowadays there are (for reasons described below) two related system calls,
truncate(2)
and truncate64(2)
, and the glibc truncate() wrapper function
checks which of those system calls are provided by the kernel and determines
which should be employed.
Below is a list of the Linux system
calls. In the list, the Kernel column indicates the kernel version for those
system calls that were new in Linux 2.2, or have appeared since that kernel
version. Note the following points:
- *
- Where no kernel version is indicated,
the system call appeared in kernel 1.0 or earlier.
- *
- Where a system call is
marked "1.2" this means the system call probably appeared in a 1.1.x kernel
version, and first appeared in a stable kernel with 1.2. (Development of
the 1.2 kernel was initiated from a branch of kernel 1.0.6 via the 1.1.x unstable
kernel series.)
- *
- Where a system call is marked "2.0" this means the system
call probably appeared in a 1.3.x kernel version, and first appeared in a
stable kernel with 2.0. (Development of the 2.0 kernel was initiated from
a branch of kernel 1.2.x, somewhere around 1.2.10, via the 1.3.x unstable kernel
series.)
- *
- Where a system call is marked "2.2" this means the system
call probably appeared in a 2.1.x kernel version, and first appeared in a
stable kernel with 2.2.0. (Development of the 2.2 kernel was initiated from
a branch of kernel 2.0.21 via the 2.1.x unstable kernel series.)
- *
- Where a system
call is marked "2.4" this means the system call probably appeared in a 2.3.x
kernel version, and first appeared in a stable kernel with 2.4.0. (Development
of the 2.4 kernel was initiated from a branch of kernel 2.2.8 via the 2.3.x
unstable kernel series.)
- *
- Where a system call is marked "2.6" this means
the system call probably appeared in a 2.5.x kernel version, and first appeared
in a stable kernel with 2.6.0. (Development of kernel 2.6 was initiated from
a branch of kernel 2.4.15 via the 2.5.x unstable kernel series.)
- *
- Starting with
kernel 2.6.0, the development model changed, and new system calls may appear
in each 2.6.x release. In this case, the exact version number where the system
call appeared is shown. This convention continues with the 3.x kernel series,
which followed on from kernel 2.6.39.
- *
- In some cases, a system call was added
to a stable kernel series after it branched from the previous stable kernel
series, and then backported into the earlier stable kernel series. For example
some system calls that appeared in 2.6.x were also backported into a 2.4.x
release after 2.4.15. When this is so, the version where the system call appeared
in both of the major kernel series is listed.
The list of system calls that
are available as at kernel 3.15 (or in a few cases only on older kernels)
is as follows:
On many platforms, including x86-32, socket calls are all multiplexed (via
glibc wrapper functions) through socketcall(2)
and similarly System V IPC
calls are multiplexed through ipc(2)
.
Although slots are reserved for them
in the system call table, the following system calls are not implemented
in the standard kernel: afs_syscall(2)
, break(2)
, ftime(2)
, getpmsg(2)
,
gtty(2)
, idle(2)
, lock(2)
, madvise1(2)
, mpx(2)
, phys(2)
, prof(2)
, profil(2)
,
putpmsg(2)
, security(2)
, stty(2)
, tuxcall(2)
, ulimit(2)
, and vserver(2)
(see also unimplemented(2)
). However, ftime(3)
, profil(3)
, and ulimit(3)
exist as library routines. The slot for phys(2)
is in use since kernel 2.1.116
for umount(2)
; phys(2)
will never be implemented. The getpmsg(2)
and putpmsg(2)
calls are for kernels patched to support STREAMS, and may never be in the
standard kernel.
There was briefly set_zone_reclaim(2)
, added in Linux
2.6.13, and removed in 2.6.16; this system call was never available to user
space.
Roughly speaking, the code belonging to the system call with
number __NR_xxx defined in /usr/include/asm/unistd.h can be found in the
Linux kernel source in the routine sys_xxx(). (The dispatch table for i386
can be found in /usr/src/linux/arch/i386/kernel/entry.S.) There are many
exceptions, however, mostly because older system calls were superseded
by newer ones, and this has been treated somewhat unsystematically. On platforms
with proprietary operating-system emulation, such as parisc, sparc, sparc64,
and alpha, there are many additional system calls; mips64 also contains
a full set of 32-bit system calls.
Over time, changes to the interfaces
of some system calls have been necessary. One reason for such changes was
the need to increase the size of structures or scalar values passed to
the system call. Because of these changes, there are now various groups
of related system calls (e.g., truncate(2)
and truncate64(2)
) which perform
similar tasks, but which vary in details such as the size of their arguments.
(As noted earlier, applications are generally unaware of this: the glibc
wrapper functions do some work to ensure that the right system call is
invoked, and that ABI compatibility is preserved for old binaries.) Examples
of systems calls that exist in multiple versions are the following:
- *
- By
now there are three different versions of stat(2)
: sys_stat() (slot __NR_oldstat),
sys_newstat() (slot __NR_stat), and sys_stat64() (slot __NR_stat64), with
the last being the most current. A similar story applies for lstat(2)
and fstat(2)
.
- *
- Similarly, the defines __NR_oldolduname, __NR_olduname, and
__NR_uname refer to the routines sys_olduname(), sys_uname() and sys_newuname().
- *
- In Linux 2.0, a new version of vm86(2)
appeared, with the old and the new
kernel routines being named sys_vm86old() and sys_vm86().
- *
- In Linux 2.4,
a new version of getrlimit(2)
appeared, with the old and the new kernel
routines being named sys_old_getrlimit() (slot __NR_getrlimit) and sys_getrlimit()
(slot __NR_ugetrlimit).
- *
- Linux 2.4 increased the size of user and group IDs
from 16 to 32 bits. To support this change, a range of system calls were
added (e.g., chown32(2)
, getuid32(2)
, getgroups32(2)
, setresuid32(2)
), superseding
earlier calls of the same name without the "32" suffix.
- *
- Linux 2.4 added
support for applications on 32-bit architectures to access large files (i.e.,
files for which the sizes and file offsets can’t be represented in 32 bits.)
To support this change, replacements were required for system calls that
deal with file offsets and sizes. Thus the following system calls were added:
fcntl64(2)
, ftruncate64(2)
, getdents64(2)
, stat64(2)
, statfs64(2)
, and
their analogs that work with file descriptors or symbolic links. These system
calls supersede the older system calls which, except in the case of the
"stat" calls, have the same name without the "64" suffix.
On newer platforms
that only have 64-bit file access and 32-bit uids (e.g., alpha, ia64, s390x)
there are no *64 or *32 calls. Where the *64 and *32 calls exist, the other
versions are obsolete.
- *
- The rt_sig* calls were added in kernel 2.2 to support
the addition of real-time signals (see signal(7)
). These system calls supersede
the older system calls of the same name without the "rt_" prefix.
- *
- The select(2)
and mmap(2)
system calls use five or more arguments, which caused problems
in the way argument passing on the i386 used to be set up. Thus, while other
architectures have sys_select() and sys_mmap() corresponding to __NR_select
and __NR_mmap, on i386 one finds old_select() and old_mmap() (routines
that use a pointer to a argument block) instead. These days passing five
arguments is not a problem any more, and there is a __NR__newselect that
corresponds directly to sys_select() and similarly __NR_mmap2.
intro(2)
, syscall(2)
, unimplemented(2)
, errno(3)
, libc(7)
,
vdso(7)
This page is part of release 3.78 of the Linux man-pages
project. A description of the project, information about reporting bugs,
and the latest version of this page, can be found at http://www.kernel.org/doc/man-pages/.
Table of Contents