User namespaces isolate security-related identifiers and attributes, in particular, user IDs and group IDs (see credentials(7) ), the root directory, keys (see keyctl(2) ), and capabilities (see capabilities(7) ). A process’s user and group IDs can be different inside and outside a user namespace. In particular, a process can have a normal unprivileged user ID outside a user namespace while at the same time having a user ID of 0 inside the namespace; in other words, the process has full privileges for operations inside the user namespace, but is unprivileged for operations outside the namespace.
The kernel imposes (since version 3.11) a limit of 32 nested levels of user namespaces. Calls to unshare(2) or clone(2) that would cause this limit to be exceeded fail with the error EUSERS.
Each process is a member of exactly one user namespace. A process created via fork(2) or clone(2) without the CLONE_NEWUSER flag is a member of the same user namespace as its parent. A single-threaded process can join another user namespace with setns(2) if it has the CAP_SYS_ADMIN in that namespace; upon doing so, it gains a full set of capabilities in that namespace.
A call to clone(2) or unshare(2) with the CLONE_NEWUSER flag makes the new child process (for clone(2) ) or the caller (for unshare(2) ) a member of the new user namespace created by the call.
Note that a call to execve(2) will cause a process’s capabilities to be recalculated in the usual way (see capabilities(7) ), so that usually, unless it has a user ID of 0 within the namespace or the executable file has a nonempty inheritable capabilities mask, it will lose all capabilities. See the discussion of user and group ID mappings, below.
A call to clone(2) , unshare(2) , or setns(2) using the CLONE_NEWUSER flag sets the "securebits" flags (see capabilities(7) ) to their default values (all flags disabled) in the child (for clone(2) ) or caller (for unshare(2) , or setns(2) ). Note that because the caller no longer has capabilities in its original user namespace after a call to setns(2) , it is not possible for a process to reset its "securebits" flags while retaining its user namespace membership by using a pair of setns(2) calls to move to another user namespace and then return to its original user namespace.
Having a capability inside a user namespace permits a process to perform operations (that require privilege) only on resources governed by that namespace. The rules for determining whether or not a process has a capability in a particular user namespace are as follows:
When a non-user-namespace is created, it is owned by the user namespace in which the creating process was a member at the time of the creation of the namespace. Actions on the non-user-namespace require capabilities in the corresponding user namespace.
If CLONE_NEWUSER is specified along with other CLONE_NEW* flags in a single clone(2) or unshare(2) call, the user namespace is guaranteed to be created first, giving the child (clone(2) ) or caller (unshare(2) ) privileges over the remaining namespaces created by the call. Thus, it is possible for an unprivileged caller to specify this combination of flags.
When a new IPC, mount, network, PID, or UTS namespace is created via clone(2) or unshare(2) , the kernel records the user namespace of the creating process against the new namespace. (This association can’t be changed.) When a process in the new namespace subsequently performs privileged operations that operate on global resources isolated by the namespace, the permission checks are performed according to the process’s capabilities in the user namespace that the kernel associated with the new namespace.
Note the following points with respect to mount namespaces:
The description in the following paragraphs explains the details for uid_map; gid_map is exactly the same, but each instance of "user ID" is replaced by "group ID".
The uid_map file exposes the mapping of user IDs from the user namespace of the process pid to the user namespace of the process that opened uid_map (but see a qualification to this point below). In other words, processes that are in different user namespaces will potentially see different values when reading from a particular uid_map file, depending on the user ID mappings for the user namespaces of the reading processes.
Each line in the uid_map file specifies a 1-to-1 mapping of a range of contiguous user IDs between two user namespaces. (When a user namespace is first created, this file is empty.) The specification in each line takes the form of three numbers delimited by white space. The first two numbers specify the starting user ID in each of the two user namespaces. The third number specifies the length of the mapped range. In detail, the fields are interpreted as follows:
- a)
- If the two processes are in different user namespaces: field two is the start of a range of user IDs in the user namespace of the process that opened uid_map.
- b)
- If the two processes are in the same user namespace: field two is the start of the range of user IDs in the parent user namespace of the process pid. This case enables the opener of uid_map (the common case here is opening /proc/self/uid_map) to see the mapping of user IDs into the user namespace of the process that created this user namespace.
System calls that return user IDs (group IDs)--for example, getuid(2) , getgid(2) , and the credential fields in the structure returned by stat(2)--return the user ID (group ID) mapped into the caller’s user namespace.
When a process accesses a file, its user and group IDs are mapped into the initial user namespace for the purpose of permission checking and assigning IDs when creating a file. When a process retrieves file user and group IDs via stat(2) , the IDs are mapped in the opposite direction, to produce values relative to the process user and group ID mappings.
The initial user namespace has no parent namespace, but, for consistency, the kernel provides dummy user and group ID mapping files for this namespace. Looking at the uid_map file (gid_map is the same) from a shell in the initial namespace shows:
$ cat /proc/$$/uid_map 0 0 4294967295
This mapping tells us that the range starting at user ID 0 in this namespace maps to a range starting at 0 in the (nonexistent) parent namespace, and the length of the range is the largest 32-bit unsigned integer. (This deliberately leaves 4294967295 (the 32-bit signed -1 value) unmapped. This is deliberate: (uid_t) -1 is used in several interfaces (e.g., setreuid(2) ) as a way to specify "no user ID". Leaving (uid_t) -1 unmapped and unusable guarantees that there will be no confusion when using these interfaces.
After the creation of a new user namespace, the uid_map file of one of the processes in the namespace may be written to once to define the mapping of user IDs in the new user namespace. An attempt to write more than once to a uid_map file in a user namespace fails with the error EPERM. Similar rules apply for gid_map files.
The lines written to uid_map (gid_map) must conform to the following rules:
Writes that violate the above rules fail with the error EINVAL.
In order for a process to write to the /proc/[pid]/uid_map (/proc/[pid]/gid_map) file, all of the following requirements must be met:
Writes that violate the above rules fail with the error EPERM.
There are various places where an unmapped user ID (group ID) may be exposed to user space. For example, the first process in a new user namespace may call getuid() before a user ID mapping has been defined for the namespace. In most such cases, an unmapped user ID is converted to the overflow user ID (group ID); the default value for the overflow user ID (group ID) is 65534. See the descriptions of /proc/sys/kernel/overflowuid and /proc/sys/kernel/overflowgid in proc(5) .
The cases where unmapped IDs are mapped in this fashion include system calls that return user IDs (getuid(2) , getgid(2) , and similar), credentials passed over a UNIX domain socket, credentials returned by stat(2) , waitid(2) , and the System V IPC "ctl" IPC_STAT operations, credentials exposed by /proc/PID/status and the files in /proc/sysvipc/*, credentials returned via the si_uid field in the siginfo_t received with a signal (see sigaction(2) ), credentials written to the process accounting file (see acct(5) ), and credentials returned with POSIX message queue notifications (see mq_notify(3) ).
There is one notable case where unmapped user and group IDs are not converted to the corresponding overflow ID value. When viewing a uid_map or gid_map file in which there is no mapping for the second field, that field is displayed as 4294967295 (-1 as an unsigned integer);
When a process inside a user namespace executes a set-user-ID (set-group-ID) program, the process’s effective user (group) ID inside the namespace is changed to whatever value is mapped for the user (group) ID of the file. However, if either the user or the group ID of the file has no mapping inside the namespace, the set-user-ID (set-group-ID) bit is silently ignored: the new program is executed, but the process’s effective user (group) ID is left unchanged. (This mirrors the semantics of executing a set-user-ID or set-group-ID program that resides on a filesystem that was mounted with the MS_NOSUID flag, as described in mount(2) .)
When a process’s user and group IDs are passed over a UNIX domain socket to a process in a different user namespace (see the description of SCM_CREDENTIALS in unix(7) ), they are translated into the corresponding values as per the receiving process’s user and group ID mappings.
As at Linux 3.8, most relevant subsystems supported user namespaces, but a number of filesystems did not have the infrastructure needed to map user and group IDs between user namespaces. Linux 3.9 added the required infrastructure support for many of the remaining unsupported filesystems (Plan 9 (9P), Andrew File System (AFS), Ceph, CIFS, CODA, NFS, and OCFS2). Linux 3.11 added support the last of the unsupported major filesystems, XFS.
First, we look at the run-time environment:
$ uname -rs # Need Linux 3.8 or later Linux 3.8.0 $ id -u # Running as unprivileged user 1000 $ id -g 1000
Now start a new shell in new user (-U), mount (-m), and PID (-p) namespaces, with user ID (-M) and group ID (-G) 1000 mapped to 0 inside the user namespace:
$ ./userns_child_exec -p -m -U -M ’0 1000 1’ -G ’0 1000 1’ bash
The shell has PID 1, because it is the first process in the new PID namespace:
bash$ echo $$ 1
Inside the user namespace, the shell has user and group ID 0, and a full set of permitted and effective capabilities:
bash$ cat /proc/$$/status | egrep ’^[UG]id’ Uid: 0 0 0 0 Gid: 0 0 0 0 bash$ cat /proc/$$/status | egrep ’^Cap(Prm|Inh|Eff)’ CapInh: 0000000000000000 CapPrm: 0000001fffffffff CapEff: 0000001fffffffff
Mounting a new /proc filesystem and listing all of the processes visible in the new PID namespace shows that the shell can’t see any processes outside the PID namespace:
bash$ mount -t proc proc /proc bash$ ps ax PID TTY STAT TIME COMMAND 1 pts/3 S 0:00 bash 22 pts/3 R+ 0:00 ps ax
/* userns_child_exec.c Licensed under GNU General Public License v2 or later Create a child process that executes a shell command in new namespace(s); allow UID and GID mappings to be specified when creating a user namespace. */ #define _GNU_SOURCE #include <sched.h> #include <unistd.h> #include <stdlib.h> #include <sys/wait.h> #include <signal.h> #include <fcntl.h> #include <stdio.h> #include <string.h> #include <limits.h> #include <errno.h> /* A simple error-handling function: print an error message based on the value in aqerrnoaq and terminate the calling process */ #define errExit(msg) do { perror(msg); exit(EXIT_FAILURE); \ } while (0) struct child_args { char **argv; /* Command to be executed by child, with args */ int pipe_fd[2]; /* Pipe used to synchronize parent and child */ }; static int verbose; static void usage(char *pname) { fprintf(stderr, "Usage: %s [options] cmd [arg...]\n\n", pname); fprintf(stderr, "Create a child process that executes a shell " "command in a new user namespace,\n" "and possibly also other new namespace(s).\n\n"); fprintf(stderr, "Options can be:\n\n"); #define fpe(str) fprintf(stderr, " %s", str); fpe("-i New IPC namespace\n"); fpe("-m New mount namespace\n"); fpe("-n New network namespace\n"); fpe("-p New PID namespace\n"); fpe("-u New UTS namespace\n"); fpe("-U New user namespace\n"); fpe("-M uid_map Specify UID map for user namespace\n"); fpe("-G gid_map Specify GID map for user namespace\n"); fpe("-z Map useraqs UID and GID to 0 in user namespace\n"); fpe(" (equivalent to: -M aq0 <uid> 1aq -G aq0 <gid> 1aq)\n"); fpe("-v Display verbose messages\n"); fpe("\n"); fpe("If -z, -M, or -G is specified, -U is required.\n"); fpe("It is not permitted to specify both -z and either -M or -G.\n"); fpe("\n"); fpe("Map strings for -M and -G consist of records of the form:\n"); fpe("\n"); fpe(" ID-inside-ns ID-outside-ns len\n"); fpe("\n"); fpe("A map string can contain multiple records, separated" " by commas;\n"); fpe("the commas are replaced by newlines before writing" " to map files.\n"); exit(EXIT_FAILURE); } /* Update the mapping file aqmap_fileaq, with the value provided in aqmappingaq, a string that defines a UID or GID mapping. A UID or GID mapping consists of one or more newline-delimited records of the form: ID_inside-ns ID-outside-ns length Requiring the user to supply a string that contains newlines is of course inconvenient for command-line use. Thus, we permit the use of commas to delimit records in this string, and replace them with newlines before writing the string to the file. */ static void update_map(char *mapping, char *map_file) { int fd, j; size_t map_len; /* Length of aqmappingaq */ /* Replace commas in mapping string with newlines */ map_len = strlen(mapping); for (j = 0; j < map_len; j++) if (mapping[j] == aq,aq) mapping[j] = aq\naq; fd = open(map_file, O_RDWR); if (fd == -1) { fprintf(stderr, "ERROR: open %s: %s\n", map_file, strerror(errno)); exit(EXIT_FAILURE); } if (write(fd, mapping, map_len) != map_len) { fprintf(stderr, "ERROR: write %s: %s\n", map_file, strerror(errno)); exit(EXIT_FAILURE); } close(fd); } static int /* Start function for cloned child */ childFunc(void *arg) { struct child_args *args = (struct child_args *) arg; char ch; /* Wait until the parent has updated the UID and GID mappings. See the comment in main(). We wait for end of file on a pipe that will be closed by the parent process once it has updated the mappings. */ close(args->pipe_fd[1]); /* Close our descriptor for the write end of the pipe so that we see EOF when parent closes its descriptor */ if (read(args->pipe_fd[0], &ch, 1) != 0) { fprintf(stderr, "Failure in child: read from pipe returned != 0\n"); exit(EXIT_FAILURE); } /* Execute a shell command */ printf("About to exec %s\n", args->argv[0]); execvp(args->argv[0], args->argv); errExit("execvp"); } #define STACK_SIZE (1024 * 1024) static char child_stack[STACK_SIZE]; /* Space for childaqs stack */ int main(int argc, char *argv[]) { int flags, opt, map_zero; pid_t child_pid; struct child_args args; char *uid_map, *gid_map; const int MAP_BUF_SIZE = 100; char map_buf[MAP_BUF_SIZE]; char map_path[PATH_MAX]; /* Parse command-line options. The initial aq+aq character in the final getopt() argument prevents GNU-style permutation of command-line options. Thataqs useful, since sometimes the aqcommandaq to be executed by this program itself has command-line options. We donaqt want getopt() to treat those as options to this program. */ flags = 0; verbose = 0; gid_map = NULL; uid_map = NULL; map_zero = 0; while ((opt = getopt(argc, argv, "+imnpuUM:G:zv")) != -1) { switch (opt) { case aqiaq: flags |= CLONE_NEWIPC; break; case aqmaq: flags |= CLONE_NEWNS; break; case aqnaq: flags |= CLONE_NEWNET; break; case aqpaq: flags |= CLONE_NEWPID; break; case aquaq: flags |= CLONE_NEWUTS; break; case aqvaq: verbose = 1; break; case aqzaq: map_zero = 1; break; case aqMaq: uid_map = optarg; break; case aqGaq: gid_map = optarg; break; case aqUaq: flags |= CLONE_NEWUSER; break; default: usage(argv[0]); } } /* -M or -G without -U is nonsensical */ if (((uid_map != NULL || gid_map != NULL || map_zero) && !(flags & CLONE_NEWUSER)) || (map_zero && (uid_map != NULL || gid_map != NULL))) usage(argv[0]); args.argv = &argv[optind]; /* We use a pipe to synchronize the parent and child, in order to ensure that the parent sets the UID and GID maps before the child calls execve(). This ensures that the child maintains its capabilities during the execve() in the common case where we want to map the childaqs effective user ID to 0 in the new user namespace. Without this synchronization, the child would lose its capabilities if it performed an execve() with nonzero user IDs (see the capabilities(7) man page for details of the transformation of a processaqs capabilities during execve()). */ if (pipe(args.pipe_fd) == -1) errExit("pipe"); /* Create the child in new namespace(s) */ child_pid = clone(childFunc, child_stack + STACK_SIZE, flags | SIGCHLD, &args); if (child_pid == -1) errExit("clone"); /* Parent falls through to here */ if (verbose) printf("%s: PID of child created by clone() is %ld\n", argv[0], (long) child_pid); /* Update the UID and GID maps in the child */ if (uid_map != NULL || map_zero) { snprintf(map_path, PATH_MAX, "/proc/%ld/uid_map", (long) child_pid); if (map_zero) { snprintf(map_buf, MAP_BUF_SIZE, "0 %ld 1", (long) getuid()); uid_map = map_buf; } update_map(uid_map, map_path); } if (gid_map != NULL || map_zero) { snprintf(map_path, PATH_MAX, "/proc/%ld/gid_map", (long) child_pid); if (map_zero) { snprintf(map_buf, MAP_BUF_SIZE, "0 %ld 1", (long) getgid()); gid_map = map_buf; } update_map(gid_map, map_path); } /* Close the write end of the pipe, to signal to the child that we have updated the UID and GID maps */ close(args.pipe_fd[1]); if (waitpid(child_pid, NULL, 0) == -1) /* Wait for child */ errExit("waitpid"); if (verbose) printf("%s: terminating\n", argv[0]); exit(EXIT_SUCCESS); }
The kernel source file Documentation/namespaces/resource-control.txt.